日本产综研与京都大学共同研发出锌空气二次电池新型电解质

2019年7月,日本产业技术综合研究所(产综研)-京都大学能源化学材料开放创新实验室(ChEM-OIL)的陈致尧研究员与窪田啓吾主任研究员等人宣称,其与京都大学能源化学研究生院的松本一彦教授等人合作开发出了一种新型电解质。该电解质能够抑制因充放电引起的劣化、延长锌空气二次电池寿命。

锌空气电池因其重量轻和容量大而作为新一代蓄电池备受关注。另一方面,其也存在一些问题。如,电解质为水溶液,电解质中的水分挥发导致电解液劣化;电解质为碱性,与空气中的二氧化碳发生反应生成氧化锌导致电极性能降低;在负极上生成枝晶。

现有锌空气电池结构及问题 出自:产综研

在京都大学的协助下,产综研致力于研发将锌空气电池转换为二次电池的材料。本次使用的电解质是氯化锌水合物熔融盐,其具有高浓度的氯化锌。该电解质为酸性,不与二氧化碳发生反应;通过将氯化锌的浓度提高到极限值,可以抑制挥发性并同时抑制枝晶的形成。

锌离子中水分子配位的浓度依赖性 出自:产综研

对比研究了使用碱性水溶液作为电解质的常规锌空气二次电池和使用氯化锌水合物熔融盐的锌空气二次电池的充放电效率。结果表明:使用碱性水溶液的锌空气二次电池反复充放电数次后效率急剧下降,第五次充放电效率尚不足首次充放电效率的20%。

与此相对,在使用了氯化锌水合物熔融盐的锌空气二次电池中,即使反复充放电10次后,其充放电效率与首次充放电效率相同,且电压没有降低。解决了将碱性水溶液用作电解质时的问题,并延长了电池的寿命。

使用不同电解质时锌空气二次电池的充放电效率对比图 出自:产综研

参考日本报道原文:https://eetimes.jp/ee/articles/1907/08/news027.html

日本JR新型氢燃料电池混合动力列车

JR东日本旅客铁道株式会社(下称JR)近日宣布,成功研发出氢燃料电池结合蓄电池的新型混合动力列车FV-E991系。

FV-E991系示意图

JR最早研发的混合动力车为柴油引擎结合蓄电池驱动马达的方式,基于此技术JR于2003年与日本铁道综合技术研究所共同研发了E991系铁道列车,该列车被命名为NE Train,是世界上最早的混合动力列车。E991系列车于2008年升级为搭载有氢燃料电池与蓄电池的E995系列车。

世界上最早的混合动力列车NE Train

此次最新发布的FV-E991系列车不仅在运行系统、最高速度、加速度等行驶性能方面远远高于E995系。最高时速可达100km/h,燃料电池上首次使用了高压氢(70MPa),续航里程可达140km。这款新型列车计划于2021年内落成,落成后将从安全性、车辆性能、环境性能等方面在鹤见线和南武线进行实证试验。

技术展示图

丰田汽车在燃料电池汽车领域拥有先进技术,早在2018年9月JR与丰田就活用氢能源方面已达成合作,此次丰田也参与了FV-E991系列车的技术研发。

燃料电池混合动力车的作用举足轻重,在能源保护及抑制二氧化碳排放方面发挥着重要作用。JR表示将通过FV-E991系的实证试验,服务于燃料电池控制技术的优化以及地面设备有关的技术开发项目等,同时将为燃料电池车在未来的实用化收集数据。

参考日本报道原文:https://response.jp/article/2019/06/05/323113.html

新型全固体铝空气二次电池研发成功

固体电池、空气电池是二次电池领域重要的研究对象,日本富士色素公司融合两项技术开发出了全固体铝空气二次电池。

追溯电池发展历史,世界上最古老的“巴格达电池”距今已有2000多年历史。而现代干电池的原型开发于131年前,自此电池发生了急速进化。

巴格达电池

图片来自雅图日本

一次电池是最先被普及应用的电池,随后可充电反复使用的二次电池应运而生,与其相关的技术研发竞争也日渐激烈。最初的二次电池是镍镉电池,于1960年开始被广泛使用。但因镉是有害物质且容量小,1990年发展出镍氢电池。随后1991年锂离子电池开始量产并广泛应用于智能手机、个人电脑、电动汽车。如下图所示,现有的镍氢电池及锂离子电池具有不同的优缺点,在迎来量产30周年之际,出现了与之竞争的新型二次电池——固体电池和空气电池。

简单地说固体电池就是将迄今为止作为正极负极的电解液替换为固体电解质。而空气电池是在正极的活性物质中使用了空气中的氧。这两种新型二次电池具有利于小型化、安全性强及电容量高的特点。而富士色素公司将固体电池、空气电池相结合开发出了全固体铝空气二次电池。

硬币型全固体铝空气二次电池样品

目前各厂商正在研发的固体电池、空气电池的电极中大多使用锂。其主要原因在于与其他材料相比锂可实现高容量。但由于金属锂具有很大的不稳定性,可能导致起火或爆炸,且随着需求量的不断扩大,锂矿资源有可能在数十年内枯竭。

富士色素公司将视点转向了铝。理论上铝空气电池的电池容量约为目前锂离子电池(150 ~ 250Wh/kg)的30至50倍(8100wh /kg),虽不及锂空气电池的理论容量(1.14万Wh/kg),但从安全性高、资源丰富、价格低等方面考虑铝空气电池具有优势。

可循环使用的丰富铝资源

铝空气电池因其高容量的特点已在军队中得以使用,但在使用过程中发现因氧化铝、氢氧化铝的副产物沉淀会发生无法发电的问题。此次富士色素公司研发的全固体铝空气二次电池负极使用铝,正极空气极使用碳或钛类材料。电解质使用与离子液体类似的深共晶溶剂(DES: Deep Eutectic Solvent),且通过合成最适合的添加剂成功地实现了电解质的固体化。通过此次在全固体化上取得的成功,相对现有的铝空气电池更易于制造,且提高了电池长时间工作时的稳定性。

铝空气二次电池概念图

离子液体是指全部由离子组成的100℃以下的液体盐,也称第三液体。因其具有阻燃性高、优异的介电性和安全性等特点,多被用于电解液、抗静电剂等。此次全固体铝空气二次电池中使用的深共晶溶剂具有与离子液体非常相似的性质,且易于降低成本。

电池领域的主角争夺战从未停息,几十年后铝有望取代锂成为二次电池主角。

参考日本报道原文:https://emira-t.jp/topics/10331/

东京大学 可延长二次电池寿命的新电极材料

东京大学研究小组近日发现电池电极材料在充电过程中可进行自我修复,使用新电极材料可延长二次电池寿命。

二次电池通过离子从电极材料脱离储存电力。但在LiCoO2等通常使用的电极材料中,大量离子脱离后会形成空穴,使结构变得不稳定,导致电池性能大幅下降,最终电池寿命变短。

通过自我修复可长时间充放电示意图

出自:东京大学

本次研究小组使用Na2MO3(M=Ru)作为电极材料。使用这种材料进行充电时(Na离子的脱离),被称作层叠缺陷的结构紊乱逐渐消失,充满电后结构不会紊乱且可进行自我修复。

实验中在开始充电前首先通过X射线衍射对呈层状结构的Na2RuO3状态进行测定,结果可知该状态下变宽的衍射线层叠构造中存在很大的紊乱(层叠缺陷)。充电后衍射线逐渐变锐利,层叠紊乱自动消失。确认了即使长时间反复充放电也可进行自动修复,性能几乎不会劣化。

以往材料与自我修复材料对比示意图

出自:东京大学

X射线衍射线测定结果

出自:东京大学

这些新的现象与以往电极材料反映出的状况完全不同。研究组利用放射光X射线衍射进一步详细调查充电过程中的结构变化。研究结果显示,在自我修复现象中Na离子脱离后形成的空穴与结构中残存的Na离子之间产生的强库仑力发挥了很大作用。

参考日本报道原文:https://eetimes.jp/ee/articles/1905/21/news020.html

可3D打印的全树脂电池

LiB锂离子二次电池广泛应用于平板电脑、数码相机等便携设备及电动汽车。但根据日本产品评估机构NITE公布,日本2013年~2017年5年内LiB引发的事故共计582起,其中属产品故障原因的有368起占63%。

LiB电池起火

为什么LiB会出故障? 原因出在构造上。

LiB采用铜或铝这样的金属箔电极分别作正极和负极,两极间通过活性物质反应发生电子的释放和传递,从而生成电能。事故的原因是由于电极受到强烈冲击后出现了漏洞。于是,所有的电流都集中到一处,导致电池过热爆炸。

LiB在安全上存在隐患,但因其较高的性能而扩大了市场。日前,日本京都的化学品制造商三洋化成工业与东京的技术研发企业APB共同开发除了全树脂电池,提高了电池的安全性及容量。

安全性

将不耐冲击的金属箔改用树脂膜、电解液改为含有活性物质的凝胶状树脂,这样完成全部构造的树脂化。即使受到用钻头开孔这样的强烈冲击也能防止起火或爆炸。

高容量

使用树脂电极可大幅增加活性物质,与现有LiB相比相同大小的电池,容量可增加2倍。

小型化

现有LiB多个电池相连时布线复杂,全树脂型LiB可层叠串联,减少了接头部件的数量,有助于产品设计的小型化。

低成本

现有LiB有烘干活性物质工序,树脂化后可大幅削减制造工程成本。

通过灵活运用树脂的优点,使用3d打印技术就可以生产全树脂型LiB,相信这款电池今后将以全新的方式出现在人们的日常生活中。

参考日本报道原文:https://emira-t.jp/eq/7722/

全固态电池 日本主流厂商研发动向

全固态电池是决定电动汽车(EV)及IoT(物联网)普及的关键因素,如今技术研发竞争愈演愈烈。

全固态电池的原理与锂离子电池基本相同,最大的区别是电极间电解质是液体还是固体。锂离子电池采用了液体电解质具有可燃性,一旦破损有可能起火。相反,全固态电池采用固体电解质没有泄露的危险。另外固体电解质锂离子移动的速度快,因此能够缩短充电所需的时间。日本计划2020年中旬实现普及,目前正为实现量产开展各项技术研发。

作为动力源,高能锂离子电池每公斤的能源输出量为200∼250千瓦时,而全固态电池约为锂离子电池的2倍。另外,锂离子电池由于离子溶出到电解液中,反复充放电时性能将随之下降,而全固态电池离子不溶解,因此电池寿命更长。根据国际能源署(IEA)报道, 2017年全球销售的100万台以上的EV和插电式混合动力汽车(PHEV)几乎全部采用了锂离子电池,2020年中期开始全固态电池的采用率将升高。据富士经济预测,全固态电池的市场规模在2030年将达到3300亿日元,之后将急剧增加,到2035年全固态电池的市场规模将达到约2兆8千亿日元。

■全固态电池在宇宙、汽车、IoT领域的发展

预计全固态电池的实用将始于电子设备及传感器,FDK展示如半导体芯片一样大小的超小型筐体,该产品计划在2020年发售。

汽车厂商均进入技术研发白热化。丰田和松下将在2020年成立车载电池新公司,共享大容量锂离子电池和全固态电池技术。

全固态电池的应用领域不仅在地球上,日前也发展到宇宙领域。日本特殊陶业公司已将自主研发的全固态电池提供给日本太空公司ispace用于宇宙探索,该公司计划2021年发射月球探测器。日立造船也已开始全固态电池AS-LiB的样品供货,计划今年内将在大阪投产。据悉该电池在摄氏100度以上的高温下也能工作,适用于宇宙领域。

■全固态电池零部件开发竞争同样激烈

在全固态电池热潮下,电解质、正极材料、负极材料等主要材料生产企业也展开了激烈的技术竞争。三井金属在固体电解质、正极材料、负极材料的研发上均有涉猎。

固体电解质方面,三井金属公司在以硫磺、锂、磷等为原材料的电解质方面新研发了各原材料的烧结技术,目标不仅限于批量生产,预计将在2025年前后实用。日本有色金属资源及材料制造商JX金属在电解质开发方面已与东日本钛金属展开合作。日本第二大石油公司出光兴产公司与汽车厂商等进行技术研发合作,并已获得相关专利,计划2020年实用。

正极材料是锂离子电池发展的关键,目前正极材料的原材料大多采用钴等稀有金属。住友金属矿山公司将传统的正极材料应用到了全固态电池中。而住友化学正在开发新型正极材料,其中将不再使用稀有金属,取而代之的是镍或锰。

负极材料是保持电池充电状态的关键,大大左右着电池的容量。日本GSYUASA公司通过利用金属硅开发出了可实现约3倍能量密度的产品。

全固态电池领域日本领先于世界。日本新能源产业的技术综合开发机构(NEDO)是促进科技产品转化的军师,丰田、松下、旭化成等企业均在研发框架中。轻质大容量新型电池“空气电池”的研发竞争等新潮流不断涌现,全固态电池的商用化步伐正在不断扩大。

参考日本报道原文:http://rrd.me/edMqj

 

快讯:雅马哈发布新型燃料电池车

日本雅马哈发动机公司开发出了新款小型燃料电池车(FCV)的试制模型,型号为YG-M FC。据悉计划2019年4月18日起在日本石川县轮岛市进行试验。将在一周约3公里的市区路线以低速反复行驶来验证该车型的行驶性能及操作性。

雅马哈发动机公司开发的燃料电池车YG-M FC

图片来源:雅马哈发动机公司

该车型续航里程是同系电动车(EV)的4~5倍,据悉一次充电可行驶150~200公里。不但大大缩短了补给耗时、提高了车辆的稼动率,且相同距离下一辆FCV的成本比两辆EV还要低。

燃料电池系统通过后轮驱动行驶,该系统由雅马哈发电机公司与合作伙伴企业共同研发而成。车体后座下方安装有电动机、圆形氢气罐、FC电池组及驱动电池包。

图片来源:雅马哈发动机公司

包括司机在内可乘坐4人,车身长3370×宽1340×高1710毫米,车辆重量640公斤。这款小型车主要适用于机场、工厂、动物园等场地内。

雅马哈表示未来将接入多种移动性能到MaaS(移动服务)中,并已开始相关技术的研发。

参考日本报道原文:http://kks.me/bp7tt

燃料电池PK二次电池 发展中的共生与超越

燃料电池在日本主要应用于汽车领域,在国际上的应用更加广泛,已不断开发出在叉车、无人机、列车上的应用产品。全球企业不断开发燃料电池产品,快速占领市场的趋势引人关注。

■预测FC全球市场规模2030年是2018年的23倍

2019年1月富士经济公布了FC系统(燃料电池系统)的市场预测报告,据悉2030年的FC全球市场规模约是4.9万亿日元,约是2018年的23倍。若将补给氢能的基础设施市场包含在内,市场规模将更大。

FC系统全球市场规模预测(富士经济)

根据对燃料电池组不同技术市场前景的预测结果,固体高分子型燃料电池(PEFC)和固体氧化物燃料电池(SOFC)的市场规模在发展前期呈现出的状态基本相同,但后期的发展趋势将发生显著变化,据数据显示2030年PEFC的市场占有率将超过90%。

PEFC与SOFC市场前景对比(富士经济)

这看似乐观的市场预测果真如此吗?在此有必要对竞争技术——液态锂离子二次电池(后统称LIB)做到知己知彼方可避免盲从。

■FC对比LIB

据下表综合对比来看,燃料电池(后统称FC)的明显优势在于能量密度高、充电时间短、大容量化的成本低。

(1)重量能量密度方面,在考虑了燃烧效率的前提下,包括有电池组、高压罐、调节器等的FC系统的重量能量密度约是LIB的5倍以上。

(2)充电时间方面,FC具有强大优势。虽LIB可缩短充电时间,但会伴有发热、早期劣化、输送超高电压等副作用。充电时间的差异化影响在巴士、卡车等大型车上更加明显。FC卡车20分钟即可完成加氢补给,EV卡车即使使用快速充电系统(50KW),充电耗时至少在10小时以上,换成150KW,充电耗时也要3个半小时以上。据下图分析可知,续航距离越长EV卡车在开工率方面的差距越大。

长距离行驶对比

(3)大容量化的成本低,此优势在于续航里程越远成本越低。将FC电池组大型化时仅需加大氢气罐或增加数量即可。尽管FCV配备的氢气罐体积大,但因原材料多采用树脂或碳纤维,所以重量上有优势。氢本身的质量是 5kg(丰田FCV –MIRAI),即使将此数值乘以10倍,也比LIB电池包的重量轻很多。

■LIB对比FC

貌似完美的FC实际上也存在着不足:(4)短距离使用时电能利用效率低(5)负荷响应性低(6)难以进行高功率输出(7)补给基础设施少——现有加氢站数量明显不足。但乐观的是这些不足有望解决。

(4) FC的电能利用效率低,仅为LIB的一半。LIB可在充电后直接输出电能,而FC电能利用效率低的原因在于它的输出过程,首先需要将电力转换为氢、再将氢压缩或液化后搬运、使用时再由氢转换为电能。

FC与LIB电池组效率对比

(原图:由日经 xTECH根据英国Riversimple公司资料制作而成)

续航距离与效率的关系 (已考虑车辆重量等因素)

(原图:由日经 xTECH根据英国Riversimple公司资料加工而成)

为提高EV的续航距离而配置上大容量电池的话,因电池在搬运中会耗费较多电能,所以实际效率将低于FCV。这一点在无人机上体现得更明显,如果电池重量能量密度低,增加容量反而会使续航时间缩短。因此对长途汽车来说,(4)反而是FC的优势。

短距离运行时FC的效率低、(5)负荷响应性低、(6)难以进行高功率输出,也许不是马上就能解决的问题,但最近推出的很多FCV已通过搭载与小型EV同等或以上容量的LIB、双电层电容器解决了这些问题。因此近期的FCV实际为混合动力,使用LIB的目的在于弥补FC弱项。

(7)FCV补给设施少,在补给设施方面LIB存在明显优势。在用途上各有特点:LIB适用于短途汽车。FCV适用于长途大巴/卡车、无人机/飞机等。

EV与FCV用途特点

随着自动驾驶技术及移动服务“MaaS”的普及,未来FC在汽车上的使用依然将成为主流。顺应趋势,美国Plug Power公司已开始与本国大学科研团队合作共同研究为FCV自动供给氢能的机器人。

如您有意了解本篇文章中的专利技术,即使不懂日语/英语也无妨,登录AIpatent系统(http://c.aipatent.com/),帮助您快速轻松获取有价值的信息。

如您需要精准机器翻译专利文献、技术转移——海外技术引入国内等,欢迎扫下方二维码联系我们。AIpatent人工智能机器翻译技术,具有中日互译、中英互译、英日互译、简体繁体互译功能,自主研发/训练的机器翻译引擎技术行业领先。期待您的联络。

参考日本报道原文:http://uee.me/aSFnP